home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-06-05 | 2.4 KB | 106 lines | [MATS/MATL] |
- echo off;
- % NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1994
- % To accompany the text:
- % NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
- % Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
- % This free software is complements of the author.
-
- % Algorithm 6.1 (Differentiation Using Limits).
- % Section 6.1, Approximating the Derivative, Page 326
- echo on; clc; format long; hold off; clear
-
- % This program finds a numerical approximation for f'(x0).
-
- % The method employed is the limit process.
-
- % The function f(x) is stored in the M-file f.m.
- % function z = f(x)
- % z = cos(x);
-
- delete f.m
- diary f.m; disp('function z = f(x)');...
- disp('z = cos(x);');...
- diary off;
-
- f(0); % Remark. f.m and difflim.m are used for Algorithm 6.1
-
- pause % Press any key to continue.
-
- clc;
- % Place abscissa for differentiation in x0.
-
- % Place the endpoints interval [a,b] about x0 in a and b.
-
- x0 = 0.8;
-
- a = 0;
-
- b = pi/2;
-
- y0 = f(x0);
-
- pause % Press any key to graph the function.
-
- clc; clg;
- h = (b-a)/100;
- Xs = a:h:b;
- Ys = f(Xs);
- a = 0;
- b = 1.6;
- c = 0;
- d = 1.1;
- axis([a b c d]);...
- plot(x0,y0,'or',Xs,Ys,'g');...
- hold on;...
- plot([a b],[0 0],'b',[0 0],[c d],'b');...
- xlabel('x');...
- ylabel('y');...
- title('y = f(x) and the given point');...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key to continue.
-
- clc;
- % Place abscissa for differentiation in x0.
-
- % Place the tolerance in toler.
-
- x0 = 0.8;
-
- toler = 1e-12;
-
- [H,D,E,n] = difflim('f',x0,toler);
-
- pause % Press any key to see the approximate derivative.
-
- X1 = [a b];
- C = [D(n) f(x0)];
- Y1 = polyval(C,X1-x0);
- axis([a b c d]);...
- plot(x0,y0,'or',Xs,Ys,'-g',X1,Y1,'-r');...
- hold on;...
- plot([-0.05 1.6],[0 0],'b',[0 0],[-0.05 1.05],'b');...
- xlabel('x');...
- ylabel('y');...
- title('The tangent line has slope m = f`(x0).');...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key to continue.
-
- points = [H;D];
- Mx0 = 'Approximating the derivative by finding a limit.';
- Mx1 = 'Numerical approximations for ';
- Mx2 = ['f`(',num2str(x0),')'];
- Mx3 = [Mx1,Mx2];
- Mx4 = 'The approximate value of ';
- Mx5 = [Mx4,Mx2,' = '];
- Mx6 = 'An estimate for the error bound is:';
- Mx7 = ' approx. derivative +- error bound';
- clc,echo off,diary output,...
- disp(''),disp(Mx0),disp(''),disp(Mx3),...
- disp(' h D(k)'),disp(points'),...
- disp(''),disp(Mx5),disp(D(n)),...
- disp(Mx6),disp(Mx7),disp([D(n) E(n)]),diary off,echo on
-